Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models.

نویسندگان

  • Hiroshi Imamizu
  • Tomoe Kuroda
  • Toshinori Yoshioka
  • Mitsuo Kawato
چکیده

An internal model is a neural mechanism that can mimic the input-output properties of a controlled object such as a tool. Recent research interests have moved on to how multiple internal models are learned and switched under a given context of behavior. Two representative computational models for task switching propose distinct neural mechanisms, thus predicting different brain activity patterns in the switching of internal models. In one model, called the mixture-of-experts architecture, switching is commanded by a single executive called a "gating network," which is different from the internal models. In the other model, called the MOSAIC (MOdular Selection And Identification for Control), the internal models themselves play crucial roles in switching. Consequently, the mixture-of-experts model predicts that neural activities related to switching and internal models can be temporally and spatially segregated, whereas the MOSAIC model predicts that they are closely intermingled. Here, we directly examined the two predictions by analyzing functional magnetic resonance imaging activities during the switching of one common tool (an ordinary computer mouse) and two novel tools: a rotated mouse, the cursor of which appears in a rotated position, and a velocity mouse, the cursor velocity of which is proportional to the mouse position. The switching and internal model activities temporally and spatially overlapped each other in the cerebellum and in the parietal cortex, whereas the overlap was very small in the frontal cortex. These results suggest that switching mechanisms in the frontal cortex can be explained by the mixture-of-experts architecture, whereas those in the cerebellum and the parietal cortex are explained by the MOSAIC model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas

Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...

متن کامل

Using functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas

Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...

متن کامل

Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions

Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...

متن کامل

Software Tools for the Analysis of Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) has become the most popular method for imaging of brain functions. Currently, there is a large variety of software packages for the analysis of fMRI data, each providing many features for users. Since there is no single package that can provide all the necessary analyses for the fMRI data, it is helpful to know the features of each software package. ...

متن کامل

Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging

Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 5  شماره 

صفحات  -

تاریخ انتشار 2004